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Abstract. In the hard pomeron theory with the number of colours Nc → ∞ the diffractive amplitude
obtained in [3] is compared with the results found for Nc = 3 in [1] and in the dipole approach in [5]. It is
shown that the double pomeron exchange contribution can be substituted by an equivalent triple pomeron
interaction term. After such a substitution the triple pomeron vertices in [1,3,5] essentially coincide. It is
demonstrated that, in any form, the triple pomeron vertex is conformal invariant. It is also shown that
higher order densities in the dipole approach do not involve 1 to k pomeron verteces with k > 2 but are
rather given by a set of pomeron fan diagrams with only a triple pomeron coupling.

1 Introduction

In the hard pomeron theory the first step towards uni-
tarization goes through the construction of the amplitude
generated by the exchange of four reggeized gluons. In the
old Regge-Gribov theory this amplitude was a sum of the
double pomeron exchange (DPE) and triple pomeron in-
teraction (TPI) contributions, both having essentially the
same behaviour at high energies. For a realistic case of
the number of colours Nc = 3 the four-gluon system was
studied by J.Bartels and M.Wuesthoff [1]. They obtained
a complicated system of coupled equations for different
colour channels amplitudes. The inhomogeneous terms for
this system included a structure which was interpreted as
a triple-pomeron vertex. Its explicit expression, (4.7) of [1],
is rather complicated (it consists of 19 terms). Later it was
demonstrated that the found vertex was conformal invari-
ant [2]. In a recent publication [3] we repeated the deriva-
tion of [1] in the limit Nc → ∞ guided by the idea that
in this limit the leading contribution reduces to a single
BFKL pomeron [4]. We found that in the limit Nc → ∞
the complicated system of J.Bartels and M.Wuesthoff de-
couples and can be explicitly solved both in the lead-
ing and subleading approximations in 1/Nc. The leading
contribution indeed reduces to a single BFKL pomeron
exchange, as expected. The subleading diffractive ampli-
tude was found to be a sum of two terms, the DPE and
TPI, in full correspondence with the Regge-Gribov pic-
ture. However the found triple pomeron vertex (also quite
complicated) resulted different from the one obtained by
J.Bartels and M.Wuesthoff. Also its conformal properties
remained unclear. On the other hand, at the same time
R.Peschanski calculated the double dipole density in the
A.Mueller dipole approach [5], valid in the Nc → ∞ limit.
From his result he extracted the triple pomeron vertex,
which is rather simple and superficially different from the

ones discussed above, obtained via the s-channel unitarity
approach. No contribution which could be interpreted as
the DPE seems to appear in the dipole approach.

Given the variety of the expressions for the 4-gluon
diffractive amplitude and the triple pomeron vertex, we
dedicate this note to compare these different results in
the Nc → ∞ limit. Our main conclusion is that, in fact,
they essentially coincide, since, as will be explicitly demon-
strated, the DPE contribution can be substituted by a
completely equivalent TPI term (but not vice versa). Once
this is done, our vertex found in [3] coincides with the one
in [1], provided one takes the limit Nc → ∞. Coupled to
pomerons, this vertex effectively reduces to the one found
by R.Peschanski in [5]. However this does not mean that
the double dipole density in the dipole approach coincides
with the diffractive amplitude in the s-channel unitarity
approach: there are certain terms in the latter which are
missing in the double dipole density.

As a byproduct of our study we prove that the triple
pomeron vertex found in [3] is also conformal invariant.
We also comment on the higher- order dipole densities in
A.Mueller’s approach, in relation to the form of 1 → k
pomeron vertex proposed by R.Peschanski in [5].

The contents of this note is distributed as follows. In
Sect. 2, of an introductory character, we present a gener-
alization of the 4-gluon amplitude in the Nc → ∞ limit to
a non-forward direction, necessary to study its conformal
properties. Sect. 3 is devoted to these properties. In Sect. 4
we demonstrate the equivalence of the DPE and certain
TPI terms. In Sect. 5 we compare the 4-gluon diffractive
amplitudes found in different approaches. In Sect. 6 we
briefly discuss the higher order dipole densities. Finally
Sect. 7 contains some conclusions.
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2 Four reggeized gluons
with a nonzero total momentum

Since the conformal transformations do not conserve the
total momentum of the gluons, to study conformal prop-
erties of the amplitudes generated by the exchange of 4
gluons in the limit Nc → ∞ we have to generalize the
derivation presented in [3] to the case when the gluons
have their total momentum different from zero. This gen-
eralization is quite straightforward and the main change
will concern the notations, which in [3] essentially used the
fact that the total momentum is zero. The colour struc-
ture and the derivation lines remain the same, so that we
shall be quite brief, just presenting the results.

The basic quantity is the amplitude D2 correspond-
ing to the exchange of two reggeized gluons (the BFKL
amplitude). It satisfies the BFKL equation

S20D2 = D20 + g2NcV12D2 (1)

where S20 is the 2 gluon ”free” Schroedinger operator for
the energy 1 − j

S20 = j − 1 − ω(1) − ω(2) (2)

ω(k) is the gluon Regge trajectory and V12 is the BFKL
interaction. We use the notation in which only the num-
ber of the gluon is indicated whose momentum enters as
a variable. The inhomogeneous term for the non-forward
direction and Nc → ∞ is

D20(1, 2) = D20(2, 1) = g2Nc (f(1 + 2, 0) − f(1, 2)) (3)

where f(1, 2) = f(2, 1) is a contribution of the qq̄ loop
with gluon 1 attached to q and gluon 2 attached to q̄. Its
explicit form can be easily found (see Appendix) but has
no importance for the following.

For the number of exchanged gluons n = 3, 4 ampli-
tudes Dn(j) are defined as integrals of Dn(j1, ...jn−1), de-
pending on n−1 partial t-channel angular momenta, over
all ji subject to condition

∑n−1
i=1 (ji − 1) = j − 1 corre-

sponding to conservation of ”reggeon energies”.
The 3 gluon amplitude D3 is found to be constructed

in terms of D2, as in the forward case:

D
(123)
3 = −D(213)

3 (4)

= g
√
Nc/8(D2(2, 1 + 3) −D2(1, 2 + 3)

−D2(3, 1 + 2))

where the upper indeces 123 and 213 show the order of
the gluons along the qq̄ loop.

The 4-gluon amplitudes D4 in the leading approxima-
tion in 1/Nc correspond to neighbour gluons being in the
adjoint colour state and all the gluons lying on the sur-
face of a cylinder attached to the qq̄ loop. There are two
independent amplitudes of this type, corresponding to the
order of the gluons 1234 and 2134. Both are found to be
expressed via the BFKL amplitudesD2, so that the contri-
bution of the 4-gluon exchange reduces to a single BFKL

pomeron. Explicitly one obtains in the same manner as in
[3]

D
(1234)
4 = (1/4)g2Nc(D2(1, 2 + 3 + 4) +D2(4, 1 + 2 + 3)

−D2(1 + 4, 2 + 3)) (5)

and

D
(2134)
4 = (1/4)g2Nc(D2(2, 1 + 3 + 4) +D2(3, 1 + 2 + 4)

−D2(1 + 2, 3 + 4) −D2(1 + 3, 2 + 4)) (6)

Our main interest here is the amplitude D(0)
4 with pairs

of gluons 12 and 34 in the vacuum colour state. It is sub-
leading in 1/Nc (its order is g4Nc compared to g4N2

c of
the amplitudes (5) and (6)). We call D(0)

4 diffractive am-
plitude since it is directly related to the diffractive cross-
section integrated over the diffractive mass. It satisfies an
equation

S40D
(0)
4 = D

(0)
40 +D

(0)
2→4 +D

(0)
3→4 +D

(0)
4→4

+g2Nc(V12 + V34)D
(0)
4 (7)

Here S40 = j − 1 − ∑4
i=1 ω(i),

D
(0)
40 =

1
2
g2(

4∑
i=1

D20(i, 1 + 2 + 3 + 4 − i)

−
4∑

i=2

D20(1 + i, 2 + 3 + 4 − i)) (8)

Terms D(0)
2→4,... etc. come from transitions into the 4-gluon

diffractive state from states with 2,...etc gluons in the
leading (cylinder) configuration. Derivation of (7) together
with a graphical illustration of its inhomogeneous terms
can be found in [6] for the case Nc = 3. In particular D(0)

4→4
corresponds to the contribution of terms with matrix ele-
ments 12 and 13 of matrix KT

4→4 to (2.10) of that paper
(note that the 13 term turns out to be zero). As in [1,3]
the sum of the inhomogeneous terms can be presented as
a certain operator Z (the three-pomeron vertex) acting on
the BFKL pomeron:

D
(0)
2→4 +D

(0)
3→4 +D

(0)
4→4 = ZD2 (9)

From the explicit form of the contributions on the left-
hand side, which can be found using the s-channel unitar-
ity relations, one finds

Z D2 = (1/2)g2[2G(1, 3 + 4, 2) + 2G(3, 1 + 2, 4)
+G(1, 2 + 4, 3) +G(1, 2 + 3, 4) +G(2, 1 + 4, 3)
+G(2, 1 + 3, 4) −G(1, 4, 2 + 3) −G(1, 3, 2 + 4)
−G(2, 4, 1 + 3) −G(2, 3, 1 + 4) −G(3, 2, 1 + 4)
−G(3, 1, 2 + 4) −G(4, 2, 1 + 3) −G(4, 1, 2 + 3)
+G(2 + 3, 0, 1 + 4) +G(1 + 3, 0, 2 + 4)] (10)

In this expression function G(1, 2, 3) is a generalization of
a similar function of two momenta introduced in [1] for the



M. Braun, G.P. Vacca: Triple pomeron vertex in the limit Nc → ∞ 149

forward case. It is defined as the vertex K2→3 for the tran-
sition of 2 to 3 gluons, integrated with the BFKL pomeron
and regularized in the infrared by terms proportional to
the gluon trajectory in the same manner as in the total
BFKL kernel:

G(1, 2, 3) = G(3, 2, 1) (11)
= −g2NcW (1, 2, 3) −D(1, 2 + 3)

×(ω(2) − ω(2 + 3)) −D(1 + 2, 3)
×(ω(2) − ω(1 + 2))

where

W (1, 2, 3) =
∫

d2k′
1

(2π)3
K2→3(1, 2, 3; 1′, 3′)D(1′, 3′) (12)

and the kernel K2→3 is given by

K2→3(k1, k2, k3; q1, q3) = − (k2 + k3)2

(q1 − k1)2q23
− (k1 + k2)2

q21(q3 − k3)2

+
k2
2

(q1 − k1)2(q3 − k3)2

+
(k1 + k2 + k3)2

q21q
2
3

(13)

Eq. (7) can be easily solved. Evidently the solution may
be constructed as a sum of two terms corresponding to
the two parts of the inhomogeneous term D

(0)
40 and ZD2:

D
(0)
4 = DDPE

4 +DTPI
4 (14)

The term DDPE
4 coming from the inhomogeneous term

D
(0)
40 is the DPE contribution. Its explicit form can be

conveniently written using the quark loop density in the
transverse coordinate space defined by the Fourier trans-
form (see Appendix)

f(1, 2) =
∫
d2rρl(r)eik1r (15)

where l = k1 + k2 . Then one finds

DDPE
4 = (1/4)g4Nc

∫
d2rρl(r)D

(r)
4 (16)

Here D(r)
4 is a convolution in the ”energy” 1 − j of two

independent BFKL pomerons

D
(r)
4 =

∫
dj12dj34δ(j − j12 − j34)D

(r)
2,j12

(1, 2)D(r)
2,j34

(3, 4)

(17)
where the pomeron D(r)

2,j (1, 2) satisfies the equation

S20D
(r)
2,j =

2∏
j=1

(eikjr − 1) + g2NcV12D
(r)
2,j (18)

and similarly for the second pomeron.

The part DTPI
4 is the TPI contribution. It can be writ-

ten as a convolution in the rapitidy space:

DTPI
4 (1, 2, 3, 4;Y ) =

∫ Y

0
G2(1, 2; 1′2′;Y − y)

×G2(3, 4, ; 3′4′;Y − y)
⊗Z(1′, 2′, 3′, 4′; 1′′, 2′′)
⊗D2(1′′, 2′′; y) (19)

where G2 is the BFKL Green function and the symbols ⊗
mean integrations over intermediate momenta. This equa-
tion clearly shows that Z is just the three-pomeron vertex.
Its explicit form can be read from (10). As compared to
the forward case studied in [3], the only difference is the
appearance of a new independent argument in functions
G.

3 Conformal invariance

In [2] it was shown that a vertex V (1234) defined by a
relation similar to (10)

V (1234)D2 =
1
2
g2

[
G(1, 2 + 3, 4) +G(2, 1 + 3, 4)

+G(1, 2 + 4, 3) +G(2, 1 + 4, 3)
−G(1 + 2, 3, 4) −G(1 + 2, 4, 3)
−G(1, 2, 3 + 4) −G(2, 1, 3 + 4)

+G(1 + 2, 0, 3 + 4)
]

(20)

is conformal invariant in the following sense. If one trans-
forms V D2 to the transverse coordinate space and inte-
grates it over the 4 gluon coordinates with a conformal
invariant function, the resulting integral is invariant under
conformal transformation of gluon coordinates. Compar-
ing (20) and (10) we observe that our vertex Z is just a
sum of permutations of gluons in V

Z = V (1324) + V (1423) (21)

Then the conformal invariance of Z trivially follows from
the conformal invariance of V , proven in [2].

In the rest part of this section we are going to demon-
strate a stronger result: not only the combination (20)
of functions G is conformal invariant, but each function
G(1, 2, 3) is conformal invariant by itself. So this function
represents a natural generalization of the BFKL kernel
not only in respect to its infrared stability but also in its
conformal properties.

The proof of the conformal invariance of G(1, 2, 3) is
straightforward. The main technical problem is its trans-
formation to the coordinate space. This task was actually
already solved in [2], although there the transformation
was applied to the vertex V as a whole, integrated over
the coordinates, which resulted in certain complications.
Having this in mind, we shall present only the final ex-
pressions for G(1, 2, 3) in the coordinate space with some
comments.
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Denote the integral part of G in (11) as G1 and the rest
terms with the gluon trajectories as G2. Transformation
of G1 to the coordinate space is straightforward and gives

G1(r1, r2, r3) = A1D2(r1, r3) (22)

where A1 is an operator in the coordinate space

A1 =
g2Nc

8π3 [2πδ2(r23)∇2
3(c− ln r13)∇−2

3

+2πδ2(r12)∇2
1(c− ln r13)∇−2

1 − 2
r12r23

r212r
2
23

−2π(c− ln r13)(δ2(r12) + δ2(r23))

−4π2δ2(r12)δ2(r23)(∇1 + ∇3)2∇−2
1 ∇−2

3 ] (23)

Here r12 = r1 − r2 etc., c = ln(2/m) + ψ(1) where m is
the gluon mass acting as an infrared cutoff. The first two
terms in A1 correspond to the first two terms in (13). The
last term in (23) corresponds to the last term in (13).

The transformation of the part G2 to the coordinate
space encounters a certain difficulty in transforming the
gluon Regge trajectory to the coordinate space, which re-
quires introduction of an ultraviolet cutoff ε. Of course the
final results do not depend on ε. One obtains

G2(r1, r2, r3) = A2D2(r1, r3) (24)

where A2 is another operator in the coordinate space

A2 = −g2Nc

8π3 (
1
r223

− 2πcδ2(r23)) + δ2(r23)ω(−i∇3)

−g2Nc

8π3 (
1
r212

− 2πcδ2(r12)) + δ2(r12)ω(−i∇1) (25)

The 4 terms in A2 correspond to the 4 respective terms
in G2. The singular operators 1/r212 and 1/r223 are in fact
defined with the help of ε as

1
r2

≡ 1
r2 + ε2

+ 2πδ2(r) ln ε, ε → 0 (26)

They do not depend on ε.
Summing A1 and A2 we find that the terms containing

lnm cancel. As a result, G(r1, r2, r3) does not depend on
the gluon mass and is infrared stable (which was to be
expected, of course).

Now we can proceed to study the conformal invariance
of the integral

I =
∫
d2r1d

2r2d
2r3Φ(r1, r2, r3)G(r1, r2, r3) (27)

where function Φ is conformal invariant. We shall demon-
strate that the integral I does not change under conformal
transformations. In doing so we shall use the fact that the
BFKL solution Ψ(r1, r2) = ∇−2

1 ∇−2
2 D2(r1, r2) is confor-

mal invariant.
We shall study the behaviour of the function G only

under the inversion, the invariance under translations and
rescaling being obvious. In the complex notation, under
inversion

r → 1/r, k ≡ −i∂ → r2k (28)

from which we also conclude (for real r)

d2r → d2r/r4 (29)

and
D2(r1, r2) = r41r

4
2D2(r1, r2) (30)

Certain parts of G give contributions which are evi-
dently invariant under inversion. Take the last term from
A1. It leads to an integral

I1 =
g2N

2π

∫
d2rΦ(r, r, r)∇2Ψ(r, r) (31)

It is conformal invariant, since both functions Φ and Ψ are
invariant, and the factor r−4 from d2r is cancelled by the
factor r4 from ∇2.

Terms with the denominators r212 and/or r223 from A1+
A2 combine into an integral

I2 = −g2N

8π3

∫
d2r1d

2r2d
2r3Φ(r1, r2, r3)

r213
r212r

2
23
D2(r1, r3)

(32)
in which the regularization (26) is implied. Under inver-
sion the ultraviolet cutoff ε is transformed into ε1 = r1r2ε
and ε2 = r2r3ε in the denominators r212 and r223 respec-
tively. This gives rise to a change of I2 under inversion:

∆I2 =
g2N

4π2

∫
d2r1d

2r3(Φ(r1, r1, r3) ln r21

+Φ(r1, r3, r3) ln r23)D2(r1, r3) (33)

The rest of the terms in A1 + A2, proportional either
to δ2(r12) or to δ2(r23) can be divided into two parts. The
first contains terms in which the δ-function is multiplied
either by a constant or by ln r13 It gives rise to a part of the
integral I3. Terms with a constant are evidently invariant
under inversion. However those containing ln r13 are not
and the corresponding change of I3 is trivially found to be

∆I3 = −g2N

8π2

∫
d2r1d

2r3(Φ(r1, r3, r3)

+Φ(r1, r1, r3)) ln(r21r
2
3)D2(r1, r3) (34)

The second part contains differential operators acting
on D2. It has a form

−g2Nc

8π2 (a1δ
2(r12) + a3δ

2(r23)) (35)

where

a1 = ∇2
1 ln r213 ∇−2

1 + ln(−∇2
1) ≡ ∇2

1 ã1 ∇−2
1 (36)

and a3 is obtained by interchange 1 ↔ 3. The operator
a1 can be transformed into a different form in which its
properties under inversion become apparent. Indeed we
have, in the complex notation

ã1 = ln r13 + ln k1 + c.c (37)
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One can prove [7] that

ln r13 + ln k1 = ln(r213k1) − k−1
1 ln r13 k1 (38)

from which one finds

a1 = k1 ln(r213k1) k−1
1 − ln r13 + c.c (39)

Under the inversion

ln r213k1 → ln r213k1 − 2 ln r3 (40)

so that the change in a1 is

∆a1 = −2 ln r13 + ln(r1r3) + c.c. = ln
r21
r23

(41)

It follows that the change of the last part of the integral
I4, which comes from (35), is

∆I4 = −g2N

8π2

∫
d2r1d

2r3(Φ(r1, r1, r3)

−Φ(r1, r3, r3))D2(r1, r3) ln
r21
r23

(42)

In the sum all the changes cancel:∆I2+∆I3+∆I4 = 0,
which proves that the total integral I is indeed invariant
under inversion.

4 Double pomeron exchange
vs. triple pomeron

Let us return to the 4-gluon equation for the diffractive
amplitude

S40D
(0)
4 = D

(0)
40 + ZD2 + g2Nc(V12 + V34)D

(0)
4 (43)

The solution of this equation is a known function, con-
structed as a sum of the DPE and a TPI parts (14). Each
part consists of several terms, corresponding to various
terms in D(0)

40 and ZD2 (see (8) and(10).
Following an idea put forward in [1], let us separate

from this known exact solution some arbitrary function f ,
which may depend on the angular momentum j:

D
(0)
4 (j) = f(j) + D̃

(0)
4 (j) (44)

Putting this into (43) we obtain an equation for the new
4-gluon function D̃(0)

4

S40D̃
(0)
4 = D

(0)
40 + ZD2 − (S40 − g2Nc(V12 + V34))f

+g2Nc(V12 + V34)D̃
(0)
4 (45)

So the inhomogeneous term has changed

D
(0)
40 +ZD2 → D

(0)
40 +ZD2−(S40−g2Nc(V12+V34))f (46)

The significance of this seemingly trivial procedure is
that if one chooses f to be the BFKL function, depending

on some gluon momenta, the added term aquires a struc-
ture of the triple pomeron contribution. So the net effect
of this procedure will be to add some new triple pomeron
term and simultaneously to add a new simpler term f
to the amplitude itself. This means that one can calcu-
late some specific triple pomeron contributions expressing
them in terms of simple functions.

Let us see how this procedure works in some impor-
tant cases. We shall consider only the forward case, for
simplicity. Let f = (1/2)g2D2(1) = (1/2)g2D2(2 + 3 + 4).
We are going to calculate then

X = (1/2)g2(S40 − g2Nc(V12 + V34))D2(1) (47)

Using (1) we can express the j − 1 term in S40 in terms
of the forward BFKL interaction. V0 and ω to obtain

X = (1/2)g2D20 + (1/2)g2(g2Nc(V0 − V12 − V34)

+2ω(1) −
∑

ω(i))D2(1) (48)

It is straightforward to find that

(V0 − V12)D2(1) = −W (1, 2, 3 + 4) (49)

where W has been defined by (12). The bootstrap relation
gives

g2NcV34D2(1) = 2(ω(3 + 4) − ω(3) − ω(4))D2(1) (50)

Passing to functions G(1, 3) with two arguments defined
as G(1, 2, 3), (11), for 1 + 2 + 3 = 0 we finally obtain

X = (1/2)g2
[
D20(1) +G(1, 3 + 4) +D2(1)(ω(3) + ω(4)

−2ω(3 + 4)) +D2(1 + 2)(ω(2) − ω(1 + 2))
]

(51)

If we put this into equation (43), we find that the
changed function D̃

(0)
4 will satisfy it with a new inhomo-

geneous term

D40 + ZD2 + (1/2)g2
[
−D20(1) −G(1, 3 + 4)

− D2(1)(ω(3) + ω(4) − 2ω(3 + 4)) −D2(1 + 2)(ω(2)

− ω(1 + 2))
]

(52)

Note that the additional term −(1/2)g2D20 will cancel
the identical term in D(0)

40 . As a result, we have converted
the double pomeron exchange contribution coming from
(1/2)g2D20(1) into a triple pomeron contribution corre-
sponding essentially to G(1, 3 + 4) plus the explicitly sep-
arated term (1/2)g2D2(1). In other words, one can calcu-
late the triple pomeron contribution corresponding to a
vertex

(1/2)g2
[

−G(1, 3 + 4) −D2(1)(ω(3) + ω(4) − 2ω(3 + 4))

−D2(1 + 2)(ω(2) − ω(1 + 2))
]

as a sum of the double pomeron exchange coupled to
−(1/2)g2D20(1) and a term (1/2)g2D2(1).
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Evidently this result is trivially generalized for f =
D2(i), i = 2, 3, 4 by simple permutation of indeces 1,2,3
and 4.

Now let us consider a case when f = (1/2)g2D2(1+2).
In this case

X = (1/2)g2D20 + (1/2)g2(g2Nc(V0 − V12 − V34)

+2ω(1 + 2) −
∑

ω(i))D2(1 + 2) (53)

In terms of W we have

V0D2(1 + 2) = −W (1 + 2, 0, 3 + 4) (54)

The bootstrap gives

g2Nc(V12+V34)D2(1+2) = 2D2(1+2)(2ω(1+2)−
∑

ω(i))
(55)

so that in terms of G we obtain

X = (1/2)g2
[
−D20(1 + 2) +G(1 + 2, 3 + 4)

−D(1 + 2)(4ω(1 + 2) −
∑

ω(i))
]

(56)

Again we see that the term with the double pomeron ex-
change coupled to g2(1/2)D20(1 + 2) can be transformed
into a triple pomeron vertex, essentially, into −G(1+2, 3+
4) term.

Finally we study a more complicated case with f =
(1/2)g2D2(1 + 3). In this case we find

V0D2(1 + 3) = −W (1 + 3, 0, 2 + 4) (57)

Calculation of V12 or V34 applied to D2(1+3) is done using
the formula derived in the appendix to [3]. It gives

V12D2(1 + 3) = W (2 + 4, 1, 3) +W (4, 2, 1 + 3) (58)
−W (3, 1 + 2, 4) −W (1 + 3, 0, 2 + 4)

and

V34D2(1 + 3) = W (2 + 4, 3, 1) +W (2, 4, 1 + 3) (59)
−W (1, 3 + 4, 2) −W (1 + 3, 0, 2 + 4)

Using these results we obtain for this case

X = (1/2)g2
[
D20(1 + 3) +G(1, 2 + 4) +G(2, 1 + 3)

+G(3, 2 + 4) +G(4, 1 + 3)) −G(1, 2) −G(3, 4)
−G(1 + 3, 2 + 4) −D2(1)(ω(3 + 4) − ω(3))
−D2(2)(ω(3 + 4) − ω(4)) −D2(3)(ω(1 + 2) − ω(1))

−D2(4)(ω(1 + 2) − ω(2))
]

(60)

The result for f = (1/2)g2D2(1 + 4) is obtained from this
after the permutation of 3 and 4.

Inspecting these results and comparing them with the
form of our triple pomeron vertex, we see that only four
terms

(1/2)g2(G(1, 3) +G(1, 4) +G(2, 3) +G(2, 4)) (61)

are not changed under these transformations and thus cor-
respond to a true triple pomeron interaction. All the rest
can be transformed into terms which are essentially dou-
ble pomeron exchange contribution. Conversely, one can
eliminate terms from the double pomeron exchange sub-
stituting them by equivalent triple pomeron contributions.

The most radical result follows if one takes

f = D
(0)
40 (D20 → D2) (62)

In this case all the double exchange becomes cancelled and
the whole amplitude is given by a sum of two terms (in
an evident symbolic notation)

D4 = D40(D20 → D2) +
∫ Y

0
G2(Y − y)G2(Y − y)Z̃D2(y)

(63)
where the new vertex is found to be

Z̃D2 = (1/2)g2
[
G(1, 3) +G(1, 4) +G(2, 3) +G(2, 4)

+G(1 + 2, 3 + 4) −G(1, 3 + 4) −G(2, 3 + 4)

−G(3, 1 + 2) −G(4, 1 + 2)
]

(64)

Comparing to (20) for the forward case, we observe that it
coincides with the part V (1234) of the vertex introduced
in [1].

5 Coupling to pomerons.
Comparison with the dipole approach

Using the possibility to transfer the DPE part into the
TPI one, we shall study the triple pomeron vertex in the
simpler form (20) for a non-forward direction. In the coor-
dinate space of 4 gluons, the dependence on only the sum
of the momenta of two gluons, say, 1+2, is translated into
a factor δ2(r12), so that the two gluons have to be taken at
the same point. However the wave functions Ψ(r1, r2) and
Ψ(r3, r4) of the two final pomerons coupled to the vertex
vanish if r1 = r2 and r3 = r4 respectively. Therefore all
terms in (20) which depend either only on the sum 1+2
or/and only on the sum 3+4 give zero, coupled to the two
pomerons. This leaves only the four terms, corresponding
to the mentioned “true” triple pomeron vertex

Z̃D2 = (1/2)g2(G(1, 2 + 4, 3) +G(1, 2 + 3, 4)
+G(2, 1 + 4, 3) +G(2, 1 + 3, 4)) (65)

Both pomeron functions Ψ(r1, r2) and Ψ(r3, r4) are sym-
metric in their respective arguments, due to the positive
signature of the pomeron. Therefore all terms in (65) give
identical contributions so that we can take

Z̃D2 = 2g2G(1, 2 + 3, 4) (66)

Turning to the explicit expression of G(1, 2, 3) in the co-
ordinate space, found in Sect. 3, we can split it into a
”proper part”

Gpr(r1, r2, r3) = −g2Nc

8π3

r213
r212r

2
23
D2(r1, r3) (67)
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(with the regularization (26) implied) and an ”improper
part” including all the rest terms, proportional to δ2(r12)
or/and δ2(r23). Noting that in the coordinate space (66) is
proportional to δ2(r23), we find that in the improper part
at least three gluons, either 123 or 234, are to be taken at
the same point in the transverse space. Then these terms
will vanish due to the mentioned property of the pomeron
wave function. Therefore the final triple pomeron vertex
is given by only the proper part of G, (67).

Coupling this triple pomeron vertex to the two final
pomerons, we arrive at the following expression for the
triple pomeron contribution to the diffractive (non-
forward) amplitude:

DTPI
4 (Y ) = −g4Nc

4π3

∫ Y

0
dy

∫
d2r1d

2r2d
2r3

r213
r212r

2
23

×D2(r1, r3; y)Ψ1(r1, r2;Y − y)
×Ψ2(r2, r3;Y − y) (68)

Expressing the initial pomeron via the non-amputated
function Ψ we can rewrite (68) as

DTPI
4 (Y ) = −g4Nc

4π3

∫ Y

0
dy

∫
d2r1d

2r2d
2r3

r213r
2
12r

2
23

×Ψ1(r1, r2;Y − y)Ψ2(r2, r3;Y − y)
×r413∇2

1∇2
3Ψ(r1, r3; y) (69)

In this form it is evident that the triple pomeron vertex is
not symmetric with respect to the initial pomeron and two
final ones: there appears an extra operator r413∇2

1∇2
3 acting

on the initial pomeron. Note that this operator is essen-
tially a product of the Kasimir operators of the conformal
group for the holomorphic and antiholomorphic parts:

M2(1, 3)M̄2(1, 3) = (1/16)r413∇2
1∇2

3 (70)

So one expects simplifications to occur provided one passes
to the conformal basis for the BFKL solutions.

This basis is formed by functions (in complex notation)

En,ν,r0(r1, r2) ≡ Eµ(r1, r2) (71)

= (
r12
r10r20

)
1−n

2 +iν(
r∗
12

r∗
10r

∗
20

)
1+n

2 +iν

They are proper functions of (70) In fact,

M2M̄2Eµ(r1, r2) =
π8

4
Eµ(r1, r2)
an+1,νan−1,ν

(72)

where we use the standard notation

an,ν ≡ aµ =
π4

2
1

ν2 + n2/4
(73)

They form a complete system:

r412δ
2(r11′)δ2(r22′) =

∑
µ

Eµ(r1, r2)E∗
µ(r′

1, r
′
2) (74)

where we use a notation

∑
µ

=
∞∑

n=−∞

∫
dν

1
2an,ν

∫
d2r0 (75)

and satisfy the orthogonality relation
∫
d2r1d

2r2
r412

En,ν,r0(r1, r2)E
∗
n′,ν′,r′

0
(r1, r2)

= an,νδnn′δ(ν − ν′)δ2(r00′)

+bnνδn,−n′δ(ν + ν′)|r00′ |−2−4iν(
r00′

r∗
00′

)n (76)

The coefficients bnν may be found in [8]. Using these prop-
erties one can express the pomeron wave function as

Ψ(r1, r2; y) =
∑

µ

eyωµEµ(r1, r2)〈µ|Ψ0〉 (77)

where ωµ = ωnν are the eigenvalues of the BFKL kernel
and we have defined

〈µ|Ψ0〉 =
∫
d2r1d

2r2
r412

E∗
µ(r1, r2)Ψ0(r1, r2) (78)

We present all the three pomerons in (69) as a superpo-
sition (77) of conformal states. As mentioned, the operator
acting on the initial pomeron is essentially a product of
Kasimir operators, so we can use (70). We then obtain,
after the integration over y

DTPI
4 (Y ) = −g4Nc

4π3

∑
µ,µ1,µ2

〈µ|Ψ0〉〈µ1|Ψ10〉〈µ2|Ψ20〉

×eY (ωµ1+ωµ2 ) − eY ωµ

ωµ1 + ωµ2 − ωµ

4π8

an−1,νan+1,ν

×
∫
d2r1d

2r2d
2r3

r213r
2
12r

2
23

Eµ1(r1, r2)Eµ2(r2, r3)

×Eµ(r1, r3) (79)

In this form the triple pomeron contribution can be com-
pared to the double dipole density found by Peschanski
[4] in A.H.Mueller’s colour dipole approach. One observes
that the two expressions differ only in the sign and factor

4π8

an−1,νan+1,ν

which in our approach distinguishes the initial pomeron
from the two final ones. The integral over the coordinates
of the three pomerons is the same. So essentially the three-
pomeron contribution to the diffractive amplitude found
in our approach coincides with the double dipole density
in the dipole approach.

However one should not forget that in our s-channel
unitarity approach the TPI term (79) does not exhaust all
the diffractive amplitude. From the derivation of Sect. 4
it follows

D
(0)
4 = D40(D20 → D2) +DTPI

4 (80)
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At high energies the TPI term behaves essentially as s2∆

and the first one as s∆ where ∆ is the BFKL intercept.
So one might think that the first term could be neglected.
However the correct region of the validity of the leading
log approximation, implicit in the hard pomeron theory, is
g2 ln s ∼ 1 when the two terms in (80) have the same or-
der of magnitude. The dipole approach uses essentially the
same leading log approximation. Therefore the fact that
it leads to the double dipole density which coincides only
with the TPI term in the s-channel unitarity approach
and shows no trace of the first term points to certain dif-
ferences between the two approaches.

6 Higher-order densities
in the dipole approach

In the colour dipole formalism the k-fold inclusive dipole
density is obtained as the k-th functional derivative of the
functional D{u(ri, rf )}, taken at u(ri, rf ) = 1 [9]. The ar-
guments ri and rf are the dipole endpoints in the trans-
verse plane. In the following in many cases we denote them
as a single variable r for brevity. The functional D satisfies
a simple equation

D(r1, r0, y, u) = u(r1, r0)e2yω(r10) +
g2Nc

8π3

×
∫ y

0
dy′e2(y−y′)ω(r10)

∫
d2r2

r210
r212r

2
20

×D(r1, r2, y′, u)D(r2, r0, y′, u) (81)

Here r1 and r0 are the end points of the qq̄ pair which
determine the initial dipole; ω(r) is not a Fourier trans-
form of the trajectory, but just ω(k) with k/m formally
substituted by r/ε, where ε is an ultraviolet cutoff. This
cutoff is also implied in the singular kernel of the integral
operator in r2. (81) is compatible with the normalization
condition D(u = 1) = 1.

Taking the k-th derivative we arrive at an equation for
the k-fold dipole density. For k > 1 we obtain

nk(r1, r0; ρ1, ...ρk; y) =
g2Nc

8π3

∫ y

0
dy′e2(y−y′)ω(r10)

×
∫
d2r2

r210
r212r

2
20
nk(r1, r2; ρ1, ...ρk; y′)

+(r1 ↔ r0) +
g2Nc

8π3

×
∫ y

0
dy′e2(y−y′)ω(r10)

∫
d2r2

r210
r212r

2
20

×
k−1∑
l=1

(nl(r1, r2; ρ1, ...ρl; y′)nk−l

×(r2, r0; ρl+1, ...ρk; y′)
+ symmetrization terms) (82)

where the symmetrization terms (ST) are obtained from
the explicitly shown one by taking all different divisions

of arguments ρ1, ...ρk into two groups with l and l − k
arguments. For k = 1 an inhomogeneous term should be
added whose form is clear from (81). One should note that
the operator on the right-hand side acts nontrivially only
on the first argument of the density nk. Its action on the
rapidity variable, on the contrary, is rather simple. Multi-
plying the equation by e−2yω(r10), differentiating then with
respect to y and passing to the j-space by the standard
Mellin transformation one obtains

(j − 1)nk(r1, r0; ρ1, ...ρk; j)

=
g2Nc

4π3

∫
d2r2L(r1, r2, r20)nk(r1, r2; ρ1, ...ρk; y)

+
g2Nc

8π3

∫
dj1dj2

(2πi)2(j + 1 − j1 − j2)

∫
d2r2

r210
r212r

2
20

×
k−1∑
l=1

(nl(r1, r2; ρ1, ...ρl; j1)

×nk−l(r2, r0; ρl+1, ...ρk; j2) + ST ) (83)

where we introduced the BFKL kernel in the coordinate
space

L(r12, r20) =
r210

(r212 + ε2)(r220 + ε2)

−2π ln
r10
ε

[
δ2(r12) + δ2(r20)

]
(84)

Comparing with (26) we see that it does not depend on ε
and is ultraviolet stable.

To solve this equation we present the dependence of
the densities on their first two arguments in the conformal
basis:

nk(r1, r0) =
∑

µ

Eµ(r1, r0)n
µ
k (85)

Here we have suppressed all other arguments in nk irrele-
vant for the time being. The densities nµ

k in a given con-
formal state are obtained from nk(r1, r0) by the inverse
transformation which follows from property (76) and a
relation between En,ν and E−n,−ν (see [8])

nµ
k =

∫
d2r1d

2r0
r410

E∗
µ(r1, r0)nk(r1, r0) (86)

So, to pass to the conformal basis, we integrate (83)
over r1 and r0 as indicated in (86). The first term on the
right-hand side can be simplified due to the property of
the BFKL kernel

g2Nc

4π3

∫
d2r2L(r12, r20)Eµ(r1, r2) = ωµEµ(r1, r0) (87)

Therefore after the integration we obtain

(j − 1 − ωµ)nµ
k(ρ1, ...ρk, j)

=
g2Nc

8π3

∫
dj1dj2

(2πi)2(j + 1 − j1 − j2)

×
∫
d2r1d

2r2d
2r0

r212r
2
20r

2
10
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×E∗
µ(r10)

k−1∑
l=1

(nl(r1, r2; ρ1, ...ρl; j1)

×nk−l(r2, r0; ρl+1, ...ρk; j2) + ST ) (88)

To find the final form of the equation we have only to
present also the densities nl and nk−l as functions of their
first arguments in the form (86). Then we get

(j − 1 − ωµ)nµ
k(ρ1, ...ρk, j) =

∫
dj1dj2

(2πi)2(j + 1 − j1 − j2)

∑
µ1,µ2

Vµ,µ1µ2

k−1∑
l=1

(nµ1
l (ρ1, ...ρl; j1)n

µ2
k−l(ρl+1, ...ρk; j2)+ ST )

(89)
where

Vµµ1µ2 =
g2Nc

8π3

∫
d2r1d

2r2d
2r0

r212r
2
20r

2
10

E∗
µ(r10)Eµ1(r12)Eµ2(r20)

(90)
is just one half of the three-pomeron vertex introduced by
Peschanski.

Equation (89) allows to obtain succesively dipole den-
sities for any number of dipoles starting from the lowest
order one-dipole density, for which

nµ
1 (ρ) =

E∗
µ(ρ)

j − 1 − ωµ

1
ρ4 (91)

(we recall that in this notation ρ includes two endpoints
of the dipole ρi and ρf ; ρ2 ≡ ρ2

if ).
Putting this into (89) for k = 2 and integrating over j1

and j2 we arrive at the expression obtained by Peschanski

nµ
2 (ρ1, ρ2; j) =

1
ω − ωµ

∑
µ1,µ2

1
ω − ωµ1 − ωµ2

×Vµ,µ1,µ2E
∗
µ1

(ρ1)E∗
µ2

(ρ2)
1

ρ4
1ρ

4
2

(92)

where ω = j−1. (To compare with [5] one should take into
acount that factors 1/(2aµ) are included in the definition
of sums over µ’s in our notation).

Now we continue this process and study the density
for three dipoles. (89) for k = 3 reads

nµ
3 (ρ1, ρ2, ρ3; j) =

1
ω − ωµ

∫
dj1dj2

(2πi)2(j + 1 − j1 − j2)∑
µ1,µ2

Vµ,µ1µ2(n
µ1
1 (ρ1; j1)n

µ2
2 (ρ2, ρ3; j2) + ST ) (93)

Let us study the term written explicitly. We put in it the
expressions for nµ1

1 and nµ2
2 obtained earlier. Then we get,

after integrations over j1 and j2:

nµ
3 (ρ1, ρ2, ρ3; j) =

1
ω − ωµ

∑
µ1,µ2,µ3,µ4

Vµ,µ1µ2Vµ2µ3µ4 (94)

× 1
(ω − ωµ1 − ωµ2)(ω − ωµ1 − ωµ3 − ωµ4)

× E∗
µ1

(ρ1)E∗
µ3

(ρ2)E∗
µ4

(ρ3)
1

ρ4
1ρ

4
2ρ

4
3

To this term we have to add terms which symmetrize in
the three dipoles.

Studying (94) we see that it corresponds to the picture
when first the initial pomeron splits into two pomerons, 1
and 2, and afterwards the pomeron 2 splits into pomerons
3 and 4. One does not find here a local vertex for the
transition of the initial pomeron into three final ones. It
is not difficult to see under which condition one would get
such a local vertex. If we forget about the dependence of
the second denominator on µ2, then one can sum over µ2.
Using (74) one obtains

∑
µ2

Vµµ1µ2Vµ2µ3µ4 =
(
g2Nc

8π3

)2 ∫
d2r1d

2r2d
2r3d

2r0
r212r

2
10r

2
23r

2
30

×E∗
µ(r1, r0)Eµ1(r1, r2)Eµ3(r2, r3)

×Eµ4(r3, r0) (95)

which is just the vertex from one to three pomerons intro-
duced by Peschanski in [5]. However, the described sum-
mation is not possible due to the second denominator. It
implies that the pomeron 2 has to evolve in y from the
point of its formation from the initial pomeron up to the
point of its splitting into the final pomerons 3 and 4.

Thus our conclusion is that the vertex for transition
from 1 to k pomerons introduced by Peschanski, in fact,
does not appear in the solution of the Mueller equation
for the k-fold density, which rather corresponds to a set
of all fan diagrams with only the triple pomeron coupling.
Absence of higher-order couplings can be directly traced
to the structure of (81) for the generating functional D,
quadratic in D.

To conclude this section we note that at asymptotic
energies the higher- order densities in the dipole approach
correspond to the standard Regge-Gribov picture , in the
tree approximation (fan diagrams), with only the triple
pomeron interaction, which however has a highly compli-
cated non-local form. Indeed, the triple pomeron interac-
tion present in (94) corresponds to a structure

T =
g2Nc

8π3

∫
d2r1d

2r2d
2r3

r212r
2
23r

2
31

G̃3(r1, r2; r′
1, r

′
2)

×G̃1(r2, r3; r′
2, r

′
3)G̃2(r3, r1; r′

3, r
′
1) (96)

where G̃i, i = 1, 2, 3 are Green functions of the interacting
pomerons defined as

G̃(r1, r2; r′
1, r

′
2) =

∑
µ

Eµ(r1, r2)E∗
µ(r′

1, r
′
2)

ω − ωµ
(97)

They are not the physical BFKL Green functions. The
latter include an extra factor depending on µ:

G(r1, r2; r′
1, r

′
2) =

1
4π8

∑
µ

an+1,νan−1,ν

×Eµ(r1, r2)E∗
µ(r′

1, r
′
2)

ω − ωµ
(98)

However in the limit s → ∞ only the lowest conformal
weights contribute n = ν = 0 for which an±1,ν = 2π4 and
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(97) and (98) coincide. Then we can forget about tildas in
(96).

We transform the Green functions to given total mo-
menta of the pomerons presenting

G3(r1, r2; r′
1, r

′
2) =

∫
d2l3
(2π)2

eil3(R3−R′
3)Gl3(r12, r

′
12) (99)

where R3 = (1/2)(r1 + r2) and similarly for the two other
Green functions. Introducing R = r1+r2+r3 we transform
the integration over the coordinates as follows
∫
d2r1d

2r2d
2r3 =

∫
d2Rd2r12d

2r23d
2r31δ

2(r12+r23+r31)

(100)
The coordinates themselves are r1 = (1/3)(R− r21 − r31)
etc., wherefrom we find

R1 = (1/6)(2R− r12 − r13),
R2 = (1/6)(2R− r21 − r23),
R3 = (1/6)(2R− r31 − r32) (101)

and

i

3∑
j=1

ljRj = i(1/3)R
3∑

j=1

lj − i(1/6)(r12l12 +r23l23 +r31l31)

(102)
where we denoted l12 = l1 − l2 etc. The integral over R
gives 9(2π)2δ2(l1 + l2 + l3). Presenting the remaining δ-
function in (100) as an integral over an auxiliary momen-
tum q we find an expression (for fixed l1, l2 and l3)

g2Nc

8π3

∫
d2q

(2π)2
d2r12d

2r23d
2r31

r212r
2
23r

2
31

exp
(
ir12(q − 1

6
l12)

+ir23(q − 1
6
l23) + ir31(q − 1

6
l31

)
Gl3(r12, r

′
12)

×Gl1(r23, r
′
23)Gl2(r31, r

′
31) (103)

At this point we recall the expression for the BFKL
Green function with a fixed total momentum:

Gl(r, r′) =
1

(2π)4

∫
ν2dν

(ν2 + 1/4)2
sω(ν)E(l)

ν (r)E(l)
ν (r′)

(104)
where

E(l)
ν (r) =

∫
d2R exp(ilR)

(
r

|R+ r/2||R− r/2|
)1+2iν

(105)
and where we retained only the dominant isotropic term.
At s → ∞ the vicinity of ν = 0 gives the dominant con-
tribution. If l 6= 0 then the integral in (105) converges at
large R and we can take the functions E out of the inte-
gral over ν at ν = 0. Taking then the asymptotics of the
remaining integral, we find

Gl(r, r′) ' 1
2π4 s

∆

√
π

(a ln s)3/2E
(l)
0 (r)E(l)

0 (r′) (106)

where ∆ = ωn=0,ν=0 is the BFKL intercept and a =
7g2Ncζ(3)/(2π2). As we see, the Green fucntion asymp-
totically factorizes in r and r′. This means that we obtain
a quantum field theory of pomerons with a propagator

P (y, l) =
2
π2 e

y∆

√
π

(ay)3/2 (107)

(not really depending on the momentum l) and an inter-
action vertex

V (l1, l2, l3) =
9g2Nc

8π3

∫
d2q

(2π)8
d2r12d

2r23d
2r31

r212r
2
23r

2
31

× exp
(
ir12(q − 1

6
l12) + ir23(q − 1

6
l23)

+ir31(q − 1
6
l31

)
E

(l3)
0 (r12)E

(l1)
0 (r23)

×E(l2)
0 (r31) (108)

The vertex factorizes under the sign of the integration
over q:

V (l1, l2, l3) =
9g2Nc

8π3

∫
d2q

(2π)2
J(l3, q − 1

6
l12)

×J(l1, q − 1
6
l23)J(l2, q − 1

6
l31) (109)

where

J(l, q) =
∫

d2r

(2π)2r2
eiqrE

(l)
0 (r) (110)

=
∫

d2p

2πp
1

|p− q + l/2||p− q − l/2|
Note that for l = 0 this derivation is incorrect. Calcu-

lations show that in this case (109) for the vertex remains
valid with

J(0, q) =
1
9q

(111)

However the Green function (104) at l = 0 has an asymp-
totics

G0(r, r′) ' 1
2π2 s

∆

√
π

a ln s
rr′ exp

(
− ln2(r/r′)

a ln s

)
(112)

so that the factorization is lost.

7 Conclusions

Study of the 4-gluon system at Nc → ∞ shows that in the
leading order the system reduces to a single pomeron, as
pointed out in [4]. The diffractive amplitude, subleading
in 1/Nc, turns out to be a sum of the DPE and TPI contri-
butions. The triple pomeron vertex which appears in the
latter is different from the one introduced in [1], (4.7), for
Nc = 3. However it is also conformal invariant. Moreover
functions G out of which both verteces are constructed
are conformal invariant by themselves.
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A novel feature of the diffractive amplitude in the hard
pomeron model at Nc → ∞ is the equivalence of the DPE
and certain terms of TPI. This allows to eliminate the
DPE contribution altogether and substitute it by addi-
tional TPI terms. The price of such a substitution is the
appearance of some extra terms of a structure different
from both the DPE and TPI, which are absent in the old
Regge-Gribov theory. Absence of terms which might be
interpreted as DPE for Nc = 3 was already noted in [1].

After shifting the DPE terms into the TPI, our triple
pomeron vertex coincides with a part V (1234) of the ver-
tex introduced in [1] leading in the high- colour limit.
Coupling this vertex to two pomerons, most of the term
vanish and the rest simple expression coincides with the
triple pomeron vertex found by Peschanski in [5]. So there
is a complete agreement between the results of [1,3,5] in
this respect. However the mentioned extra terms (the first
term on the r.h.s of (80)) do not seem to appear in the
dipole picture, which points to a certain difference between
this approach and the s-channel unitarity one.

In the dipole approach the higher-order dipole densi-
ties are found to be represented by a set of pomeron fan
diagrams with only a triple pomeron coupling. Four and
more pomeron coupling do not appear, which is a clear
prediction of the dipole picture. It would be interesting to
verify this prediction in the framework of the s-channel
unitarity approach by studying transitions from 1 to 3
pomerons.
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Appendix

Quark loop for non-zero momentum transfer

Consider a qq̄ loop for the scattering of a virtual photon
γ∗(q) + ... → γ∗(q + l) + ..., q2 = −Q2. The momen-
tum transfer l is taken to be pure transversal. Then a
straightforward calculation gives for the function f(1, 2)
corresponding to the loop with gluon 1 attached to q and
gluon 2 attached to q̄ the following expression

f(k1, k2) = e2f

∫ 1

0
dα

∫
d2k

(2π)3
N

D
(113)

where
D = (ε2 + k2)(ε21 + (k + k1 − αl)2) (114)

ε2 = Q2α(1−α)+m2
f , ε

2
1 = (Q2+l2)α(1−α)+m2

f (115)

ef and mf are the quark electric charge and mass and the
numerator for a transversal photon is

NT = m2
f + (α2 + (1 − α)2)k(k + k1) − α2kl (116)

and for a longitudinal photon is

NL = 4Q2α2(1 − α)2 (117)

This expression can be conveniently represented as an
integral over the colour dipole density ρ created by the qq̄
pair at a given distance in the transverse space:

f(k1, k2) =
∫
d2rρl(r)eik1r (118)

From (113) - (117) one finds for the transverse and longi-
tudinal photons:

ρT
l (r) =

e2f
(2π)3

e−iαlr

∫ 1

0
dα[m2

fK0(εr)K0(ε1r)

+(α2 + (1 − α)2)εε1K1(εr)K1(ε1r)

−α(1 − α)(1 − 2α)
iεl · r
r

K0(ε1r)K1(εr)](119)

ρL
l (r) =

4e2fQ
2

(2π)3
e−iαlr

∫ 1

0
dαα2(1 − α)2K0(εr)K0(ε1r)

(120)
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